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Abstract

Background—Identifying predictors of conversion to Alzheimer’s disease (AD) is critically 

important for AD prevention and targeted treatment.

Objective—To compare various clinical and biomarker trajectories for tracking progression and 

predicting conversion from amnestic mild cognitive impairment to probable AD.

Methods—Participants were from the ADNI-1 study. We assessed the ability of 33 longitudinal 

biomarkers to predict time to AD conversion, accounting for demographic and genetic factors. We 

used joint modelling of longitudinal and survival data to examine the association between changes 

of measures and disease progression. We also employed time-dependent receiver operating 

characteristic (ROC) method to assess the discriminating capability of the measures.

Results—23 of 33 longitudinal clinical and imaging measures are significant predictors of AD 

conversion beyond demographic and genetic factors. The strong phenotypic and biological 

predictors are in the cognitive domain (ADAS-Cog; RAVLT), functional domain (FAQ) and 

neuroimaging domain (middle temporal gyrus and hippocampal volume). The strongest predictor 

is ADAS-Cog 13 with an increase of one SD in ADAS-Cog 13 increased the risk of AD 

conversion by 2.92 times.

Conclusion—Prediction of AD conversion can be improved by incorporating longitudinal 

change information, in addition to baseline characteristics. Cognitive measures are consistently 

significant and generally stronger predictors than imaging measures.
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1. Introduction

Mild cognitive impairment (MCI) often represents an intermediate stage between normal 

cognition and Alzheimer’s disease (AD) [1], and individuals with MCI have been an 

increasingly common target population for evaluating prognosis and early treatment for AD. 

However, only a portion of MCI patients progress to dementia while some individuals 

remain stable or even revert to the normal cognitive status [2]. Identifying predictors of 

conversion to AD is therefore critically important for AD prevention and targeted treatment.

Existing research has implicated a number of biomarkers that predict conversion from MCI 

to AD or cognitive decline, including neuroimaging biomarkers [3–6], neuropsychological 

assessments [7–9], and biomedical biomarkers [10,11]. Most existing studies [12,13] of 

predicting time-to-AD adopt Cox regression models with baseline measures. Such an 

approach implicitly assumes that the predictors stay constant over the length of study, which 

is unlikely to be true in studies over an extensive period of time. Moreover, the majority of 

such studies [14,15], exploiting longitudinal measures for predicting future biomarkers or 

clinical score of MCI patients, fail to take into account dependent terminal events, i.e., a 

biomarker’s trajectory is directly informative about the time to event. In this scenario, 

separate modeling of the survival outcome and the longitudinal processes may overlook the 

underlying association and lead to biased inference.

The goal of this research is to identify the optimal outcome measures for enriching an MCI 

treatment study population with subjects who are most likely to progress over time. Current 

study designs have become reliant on biomarkers at baseline as a strategy for enriching with 

decliners, but it remains to be seen whether this strategy will be effective. Incorporation of 

longitudinal data for subject selection is plausible, and some adaptive design studies have 

begun to explore this strategy [16–18]. However, the comparative predictive value of 

longitudinal clinical and imaging data has not been previously reported. In this paper, 

instead of considering the conversion of MCI to AD as a binary response, we assessed the 

ability of various measures to predict time from study entry to AD conversion (first 

occurrence) for MCI patients using joint modeling of longitudinal and time-to-event data 

[19,20]. The joint model analyzed these two types of outcomes simultaneously and was able 

to give more accurate parameter estimation and smaller standard errors which in turn yield 

greater statistical power. The specific measures chosen for comparison in this study covered 

the domains of clinical measures, neuropsychological assessments, neuroimaging, and 

functional and behavioral assessments. Relevant demographic and genetic variables (i.e., 

age, gender, education and APOE genotype) were employed as covariates given their 

potential effects on disease progression in AD [9].

2. Materials and Methods

2.1. Study design and participants

Data used in this analysis were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative 1 (ADNI-1) study (http://adni.loni.ucla.edu), which investigates the progression of 

Alzheimer’s disease using serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and various clinical and neurocognitive 
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measures. Detailed information regarding the ADNI study procedures, including participant 

inclusion and exclusion criteria and complete study protocol can be found at http://

www.adni-info.org. The data are publically available at http://ida.loni.ucla.edu and were 

downloaded on December 1, 2015.

This analysis included 384 patients with amnestic MCI at baseline evaluation who had at 

least one follow-up visit. Criteria for MCI were the same as defined by Petersen et al. [1]: a 

memory complaint that had objective memory loss measured by education adjusted scores 

on Wechsler Memory Scale Logical Memory II, a Folstein Mini-Mental State Examination 

score (MMSE) of 24–30, Clinical Dementia Rating (CDR) equal to 0.5, absence of 

significant levels of impairment in other cognitive domains, and essentially preserved 

activities of daily living. All subjects were given a written informed consent at the time of 

enrollment, and the study has been approved by the local institutional review board at all 

participating sites.

2.2. Measures

The ADNI study collected a broad range of clinical and biological data about patients. We 

first reviewed the literature and identified 33 measures, based on their availability in the 

ADNI dataset and sensitivity to detect conversion from MCI to AD in prior studies. As part 

of the ADNI-1, subjects were assessed at baseline, 6, 12, 18, 24 and 36 months, and 

continued follow-ups were conducted annually as part of the ADNI-2. All potential predictor 

measures were collected at multiple time points during the follow-up period. We did not 

consider the domains of cerebrospinal fluid (CSF) biomarkers, because it was collected in a 

small subset of ADIN-1 subjects at baseline and 12th month only.

2.2.1. Neuropsychological assessment—Measurements in the neuropsychological 

domain included Alzheimer Disease Assessment Scale–Cognitive (ADAS-Cog), which 

assesses written and verbal responses of subjects that are related to fundamental cognitive 

functions. The total score is reported as a composite score of 11 or expanded to 13 items and 

ranges from 0 to 70 or 85, with a higher score indicating poor cognitive function. Other 

measures of verbal memory included were the Rey Auditory Verbal Learning Test (RAVLT 

immediate, RAVLT learning, RAVLT forgetting), the Mini Mental State Examination 

(MMSE; 11 questions with scores range from 0 to 30 and lower scores reflect severer 

cognitive impairment), Montreal Cognitive Assessment (MoCA; a 30-point test assesses 

different cognitive domains), and CDR Sum of Boxes (CDR-SB; sum of box method to 

stage severity of dementia with range from 0 to 18).

2.2.2. Functional and behavioral assessment—Variables included Functional 

Assessment Questionnaire (FAQ; 10 items with scores range from 0 to 30, with higher 

scores reflecting greater functional dependence), Everyday Cognition by the patient 

(ECogPt) and Everyday Cognition by the patient’s study partner (ECogSP), which assesses 

participant’s capability of performing normal everyday tasks in multiple domains (Memory, 

Language, Visuospatial Abilities, Planning, Organization, Divided Attention, and Total 

score).
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2.2.3. Neuroimaging—Neuroimaging measures were PET imaging results including 

FDG-PET, PIB, and AV45, and MRI volumetric data of Ventricles, Hippocampus, Whole 

Brain, Entorhinal, Fusiform gyrus, Middle temporal gyrus (MidTemp), and intracerebral 

volume (ICV). The analyzed data from previous studies [21–24] were used. FDG-PET was 

represented as a sum of mean glucose metabolism uptake in regions of angular (right and 

left), temporal (right and left), and posterior cingulate [21]. PIB was the average of 

standardized uptake value (SUVR) of frontal cortex, anterior cingulate, precuneus cortex, 

and parietal cortex [22]. AV45 was the average of florbetapir SUVR of frontal, anterior and 

posterior cingulate, lateral parietal, and lateral temporal cortex [23]. The detailed protocol of 

ADNI PET data acquisition and processing are available at http://adni.loni.usc.edu/data-

samples/pet/. The MRI data were acquired on 1.5T or 3T MRI scanners, and volumes of the 

region of interests (ROIs) were reconstructed with the Freesurfer [24].

2.3. Statistical analyses

The markers in this analysis were collected from participants at multiple time points during 

the follow-up period and were hypothesized to be related to AD progression-the event of 

interest. When the value of a marker at a time point is affected by the occurrence of an event 

at that time point, the longitudinal marker is an endogenous time-dependent covariate. 

However, the Cox model and its extensions cannot properly handle endogenous covariates 

[25]. We simultaneously modeled time-to-dementia as well as longitudinal change in the 

aforementioned neuro-psychological, neuro-imaging or functional/behavioral variables, 

using joint modelling for longitudinal and survival data. A joint model consisted of two sub-

models: the longitudinal sub-model and the survival sub-model. The longitudinal sub-model 

allowed us to describe the evolution of a repeated measure over time, while adjusting for age 

at baseline and presence of apolipoprotein E (APOE) ε4 allele. A random intercept and a 

random slope of time were also included in the sub-model to capture the between subject 

variation. We assumed linear trajectories for the markers, because the longitudinal measures 

under consideration did not display highly non-linearity in the trajectories before their AD 

conversion (Figure 1 and 2). However, in a different setting where patients could have highly 

non-linear evolution, spline could be implemented in the longitudinal model to account for 

the nonlinear trajectories of measures. The survival time (in years) was defined as from the 

baseline visit date to AD conversion or censoring. Although certain participants were 

continued followed after the event of interest in the original study, we excluded the visits and 

measurements after AD conversion from this analysis. The survival sub-model took the form 

of a proportional hazards model with baseline covariates such as gender, age at baseline, 

presence of the APOE ε4 allele, years of education, and one of the longitudinal measures. 

An association parameter (α) linked the two sub-models, assuming the hazard was 

dependent on the longitudinal measure through its current value.

Suppose yi(tij) were the observations of one of the longitudinal measurements for the ith 

person (i = 1, …, N) at the jth time point (j = 1, …, ni), tij. The joint model was represented 

as
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The parameter b0i was the random intercept, b1i was the random slope indicating subject-

specific change rate of the measure, and εi(tij) was the measurement error. A significant α 
indicated a strong association between the longitudinal measure and time to AD conversion. 

The joint model was reduced to separate models if α = 0, and the advantage of joint model 

disappeared. The quantity exp(α) was the hazard ratio (HR; inverse hazard ratio HR−1 was 

used when the α estimate was negative) for a one-unit increase in the trajectory mi(t), at time 

t. Specifically, a one-unit increase in trajectory increased the hazard by exp(α) times. To 

facilitate the comparison of the association parameter among markers, each maker was 

scaled to zero-mean and unit variance using the mean and standard deviation (SD) among all 

the participants and all the time points. For comparison, we also fitted a cross-sectional 

proportional hazards model (Cox model) that only incorporated the baseline measure in the 

prediction. The cross-sectional Cox model was represented as

where h0(t) was the baseline hazard function and yi1 was the measure taken at the baseline 

visit. The parameter α in the Cox model quantified the association between the baseline 

measurement and the event hazard. We refer the readers to [26] for an introductory overview 

on joint modeling and the comparison with Cox model. For consistency, we scaled each 

marker at baseline to zero-mean and unit variance.

We also assessed how well these measures could discriminate between MCI patients who 

progressed to AD and those who had a stable status. We calculated time-dependent areas 

under the ROC curves (AUCs) to assess the performance of the longitudinal marker at 

different time points over the follow-up period. We also computed the dynamic 

discrimination index (DDI) [27], which summarized the discrimination power of the 

measure over the whole follow-up period for a Δt ahead prediction, using a weighted 

average of AUCs. In general, higher AUCs and DDI indicate higher discrimination of the 

models. We computed the probabilities of conversion to probable AD in the time frame (t, t
+Δt], which meant using all measures of subject survived till time t to perform a Δt ahead 

prediction. We selected t at 12th, 18th, and 24th month, and Δt as 6 and 12 months.

To avoid overestimation of the predictive performance of the markers [28], we conducted a 

k-fold cross validation. The total sample of the MCI patients was randomly broken into k 
subgroups of approximately equal sizes. The analysis was repeated k times with one subset 

being left out as the test set and the others being used as the training set in each analysis. 

Parameter estimates of the joint model were derived from the training set and applied to the 

test set. Predictive accuracies were then computed by averaging the k separate analyses. We 

used k as 6 to have about 320 subjects in the training set and 64 subjects in the test set, 

which was considered necessary for power and allowed for a reasonable number of 
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validations. All the analyses were performed using R (version 3·2·1). Cross-sectional Cox 

modeling and proportionality testing were conducted using the survival package. The Joint 

modeling and time- dependent AUCs calculation were achieved using the JM package [29].

3. Results

The demographic characteristics of the study population are shown in Table 1. Participants 

were followed up for a mean of 3.2 years (SD 2.6; range 0.4–9.3 years) before conversion to 

AD or censoring. The average age at baseline was 74.7, 37.5% were women and a 15.6 years 

average education length. More than 54.2% of subjects had one or more APOE ε4 alleles. 

Among the 384 MCI patients, 200 patients converted to AD over a mean follow-up period of 

2.3 years. 184 patients had stable MCI, of which 77 had less than 3 years of follow-up while 

107 were followed for at least 3 years. 23% subjects had only one follow-up visit.

Table 2 shows the results of two models for each measure. We conducted the Z test of the 

null hypothesis in which the association parameter was zero (no association between maker 

and time to AD conversion). The HR was the primary effect size, and the markers were 

ranked based on the absolute Z value of the association parameter α from the longitudinal 

prediction model. The column of the association parameter for the cross-sectional Cox 

model indicates that the baseline information was a significant predictor of the hazard of AD 

progression for 19 of the 33 measures. The majority of the association parameters in the 

longitudinal model were larger (in absolute value) than their counterparts in the cross-

sectional Cox model, where 23 out of 33 measures were significantly predictors of AD 

conversion. The longitudinal measures of ECogSP (in the domains of language, planning 

and visuospatial abilities) and RAVLT forgetting were significant predictors, although their 

baseline measures were not significant in the cross-sectional Cox model. Thus, prediction of 

AD progression based on both baseline and longitudinal changes was stronger than 

prediction based only on baseline information. Based on the results of the joint models, the 

strongest predictors were Alzheimer’s Disease Assessment Scale test (ADAS-Cog 13, 

ADAS-Cog 11), followed by RAVLT immediate, FAQ and Middle temporal gyrus volume. 

Specifically, an increase of one SD (7.7 units) in trajectory of ADAS-Cog 13 score increases 

the hazard of AD conversion by 2.92 times (95% CI 2.33–3.66), a decrease of one SD (10.6 

units) in trajectory of RAVLT immediate recall increases hazard by 3.16 times (95% CI 

2.41–4.15), an increase of one SD (5.2 units) in trajectory of FAQ score increases hazard of 

AD conversion by 1.95 times (95% CI 1.64–2.34), and a reduction of one SD (2851 mm3) in 

middle trajectory of temporal gyrus volume increases hazard by 1.98 times (95% CI 1.65–

2.37).

Figure 1 shows individual empirical curves and fitted spline curves before AD conversion 

for the participants who progressed to AD during the study, for ADAS-Cog 13, ADAS-Cog 

11, CDR-SB and FDG-PET, respectively. Dashed lines are individual empirical data and 

solid lines are cubic spline curves (shading shows 95% CIs). The vertical line in each panel 

denotes the year of AD diagnosis (set to year 0). The figure shows that all measures 

deteriorated as AD progressed. Figure 2 shows the trajectories and fitted spline curves for 

participants who progressed and those who did not progress to AD, for ADAS-Cog 13, 

ADAS-Cog 11, CDR-SB and FDG-PET, respectively. Only measurements before AD 
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conversion or censoring are plotted on the figure. Participants who progressed to AD and 

those who did not progressed to AD during the study can be clearly distinguished by each of 

these measures.

Table 3 compares the discriminative capability of the top 10 strongest predictors by 

calculating the time-dependent AUCs at 12th, 18th, and 24th month. Different from just using 

baseline predictors, the prediction in joint model was based on accumulating evidence. 

Specifically, the values in the first column in Table 3 evaluated the performance of using all 

previous observations of the remaining MCI patients (those who had not progress to AD) at 

time 12th month (sample size n = 315) to predict their disease status between 12th and 18th 

month. The DDI summarizes the discrimination power of the marker to predict the patients’ 

disease status in the next 6 or 12 months. Among the predictors, ADAS-Cog 13 had the best 

discrimination performance with AUCs ranging from 0.740 to 0.859 for all combinations of 

t and Δt, and DDI being 0.789 and 0.785 for Δt as 6 and 12 months, respectively. In general, 

cognitive and functional markers (ADAS, Auditory Verbal Learning Test, FAQ and MMSE) 

have higher AUCs and DDI than those of imaging markers, indicating that cognitive 

measures may be more useful in predicting risk of AD conversion within a few years among 

MCI patients.

4. Discussion

In this paper, we used comprehensive longitudinal assessments to predict dementia in 

Alzheimer’s disease in a manner that has not been accomplished by prior studies. By 

accounting for dependent terminal events, the joint models of longitudinal change and time 

to AD conversion identified several significant predictors. The strongest predictors are in the 

cognitive domain (ADAS-Cog, RAVLT), functional domain (FAQ), and neuroimaging 

domain (middle temporal gyrus and hippocampal volume). These findings are consistent 

with reports in the literature [3,4,6–9].

Our study has also consolidated the findings in Fleisher, et al. [30] in the sense that common 

cognitive measures could provide more accurate prediction regarding AD conversion than 

volumetric MRI measures by evaluating the discriminative capability of the measures at 

different time points. In a large meta-analysis which did not include ADNI data, baseline 

cognitive measures were demonstrated as better predictors of AD conversion than brain 

volumetric markers [31]. Thus, with consideration of the comparative economy of cognitive 

measures, in expense and time, these measures should still be the gold standard for clinical 

assessment of conversion from MCI to AD. In addition, we note that different markers may 

show different predictive values at different times in disease progression. This has been 

reflected in the different changes of AUCs with the passage of time. The cognitive measures 

such as ADAS-Cog retain a moderate discriminative capability even in the later phrase of 

disease process while neuroimaging measures (volumetric MRI, PET) become less useful as 

time passes. This may explain why volumetric changes on MRI were reported to be better 

predictors than cognitive measures among cognitively normal individuals [32]. A similar 

point was also made in the literature [33,34]. Our analyses controlled for the presence of 

APOE and demographic variables that have been associated with cognitive decline or the 

likelihood of developing AD. One caveat in our study is that some neuropsychological tests 
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and clinical measures, such as CDR Sum of Boxes, may be used in the diagnostic process of 

AD. However, diagnoses are based, in various weight, on clinical history, laboratory data, 

and a full battery of tests which include some of the selected measures. It is also known that 

how far someone has progressed on a staging or cognitive measure predicts how fast they 

decline. So it is reasonable to explore selected measures as predictors in the joint models.

There are several limitations in our study. First, not all ADNI-1 participants underwent all 

measurements examinations, especially PET imaging and Everyday Cognition. The 

differences in sample sizes, particularly the smaller sample of FDG-PET and PIB-PET, may 

limit our ability to compare their predictive capabilities. However, this did not affect our 

conclusion on the other markers. Second, while each measure independently showed 

promise in predicting disease progression in our study, many recent researchers have shown 

interest in examining biomarker combinations as predictors for AD conversion [35–37]. The 

joint model adopted in present analysis can only handle a single longitudinal outcome, but 

can be extended to incorporate multivariate longitudinal measures as proposed in He, et al. 

[38]. The general idea is to introduce a continuous latent variable to represent patients’ 

underlying disease severity. The observed longitudinal markers can be modeled as 

measurements of the latent variable using a multilevel item response theory sub-model and 

the time-to-event data are modeled using a Cox proportional hazard sub-model. Because all 

outcomes share the same latent variable, the dimensionality of the data can be reduced and 

fewer parameters are needed. Wang, et al. [39] proposed a prediction framework for multiple 

longitudinal measures and event time data based on the method. Simultaneous modeling of 

multiple longitudinal outcomes in joint models may substantially enhance the predictive 

ability of a joint model, and help to identifying the optimal combination of measures in 

determining the risk of incident AD dementia in MCI patients. Moreover, rather than using 

the diagnoses assigned by ADNI, which has been shown to produce a high rate of false 

positive diagnostic errors, the new approach for staging preclinical AD [40] would sharpen 

our model to identify early predictors. Last, the ADNI cohort is a convenience sample rather 

than an epidemiologic cohort, it is likely to result in recruiting more impaired subjects. 

However, this study focus on MCI population, may be less prone to selection bias than the 

larger ADNI study population. The cross-validation used in the analysis was an internal 

validation, and external validation with an independent data set could further consolidate our 

findings.

In summary, our study was the first attempt to comprehensively and systematically evaluate 

the predictive ability of markers for AD conversion under the joint model framework, which 

includes both baseline measures and changes in these measures over time. The sample from 

ADNI that we used was large, and the data were collected uniformly, rigorously and on a 

broad range of measures. We demonstrated that cognitive measures were consistently 

significant and generally stronger predictors than imaging measures, with ADAS-Cog 13 as 

the optimal predictor. Moreover, the measures identified as strong predictors in this study 

along with each joint model can be used for subject specific prediction. Such individualized 

risk prediction can help personalize screening strategies and/or guide the initiation of 

treatment among MCI patients or subject selection for clinical trials.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Trajectories of ADAS-Cog 13, ADAS-Cog 11, CDR-SB and FDG-PET before AD 
conversion for the 200 participants who progressed to AD during the study
Dashed lines (light gray) are individual empirical data solid lines are cubic spline curves 

(shading shows 95% CIs). The vertical line in each panel denotes year of AD diagnosis (set 

to year 0). ADAS-Cog = Alzheimer’s Disease Assessment Scale-Cognitive Subscale test. 

CDR-SB = Clinical Dementia Rating Sum of Boxes. FDG-PET = Sum of mean glucose 

metabolism uptake in regions of angular, temporal, and posterior cingulate.
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Figure 2. Trajectories of ADAS-Cog 13, ADAS-Cog 11, CDR-SB and FDG-PET for all 
participants
Dashed lines (light gray) are individual empirical data. The solid lines represent participants 

converted to AD during the study and the wide dashed lines represent the participants not 

converted to AD during the study (shading shows 95% CIs). The two groups can be clearly 

distinguished by each of these measures. 0 denotes year of entry the study. ADAS-Cog = 

Alzheimer’s Disease Assessment Scale-Cognitive Subscale test. CDR-SB = Clinical 

Dementia Rating Sum of Boxes. FDG-PET = Sum of mean glucose metabolism uptake in 

regions of angular, temporal, and posterior cingulate
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Table 1

Baseline characteristics of ADNI-1 participants with mild cognitive impairment (MCI)

Progressed to AD during the study (n = 
200)

Did not progress to AD during the study (n 
= 184) Combined (n = 384)

Women 75 (37.50%)* 62 (33.50%) 137 (35.7%)

Age (years) 74.44 (7.09) 75.03 (7.55) 74.71 (7.31)

APOE4 present 127 (63.50%) 81 (44.00%) 208 (54.16%)

Education (years) 15.82 (2.86) 15.33 (3.19) 15.58 (3.03)

Time in study (years) 2.25 (1.74) 4.24 (2.91) 3.20 (2.57)

*
Data are mean (SD) or n (%)
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